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AN ANALYSIS OF ECHOES

FROM A SOLID ELASTIC SPHERE IN WATER

Robert Hickling

California Institute of Technology
Pasadena, California

Abstract

It is well-known in sonar work that the pulse form of a direct

echo from a target bears little relation to the form of the original signal.

This is true even for regularly shaped bodies, such as a sphere. In this

paper, the case of a homogeneous elastic sphere in water is examined

theoretically and it is shown in comparison with experimental results,

that the observed effects originate from vibrations induced in the sphere

by the incident sound. Calculated results are presented for a variety of

solid materials and it seems that echo forms could possibly provide in-

formation about the size and constitution of a sonar target.
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1. Introduction

It is well-known in sonar work that the pulse form of the direct

echo returned by a stationary insonified target in water is usually quite

different from that of the original signal sent out by the transducer. This

effect can be observed even when the target has a regular shape as in the

case of a sphere. In the experiments which have been made, the incident

sound has consisted of single frequency, constant amplitude pulses of

various lengths, and the echo pulse generally appears in the form of

multiple echoes of the original pulse; i.e. compared to the original pulse,

the echo is generally longer and subject to amplitude modulation. Pre-

sumably there are also differences in frequency content, but there does

not appear to be any quantitative data available on the subject.

If the body has an irregular shape it is possible to suppose that

this effect is due to echoes returned by the individual irregularities.

However in the case of regularly shaped bodies with no abrupt changes in

curvature, such an explanation cannot be used. In this event it would

seem reasonable to suppose that the distortion in the echo is caused

either by diffraction or by vibrations occurring within the solid material

of the target or by both. The frequencies used in sonar usually preclude

the influence of diffraction, so that the observed effects would appear to

be due mainly to vibrations in the solid. Since the density of any solid

does not differ from that of water bymuch more than a factor of eight, it

seems quite possible for the incident sound to cause vibrations in the

solid material of the target. In air the corresponding density ratio would

be of the order of 104 so that a target would react more like a rigid body,
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with a consequent diminution in echo distortion.

It is the purpose of this paper to test the validity of this hypothesis

in the case of a homogeneous solid sphere supporting shear and com-

pressional waves. Suitable experimental data[ 1] has recently become

available and this is compared with calculated results based on known

formal solutions [2], [3]. These results were obtained using a high speed

computer. Previous calculations have been made for fluid[ 4 ] and rigid [ 5]

spheres.

2. Formulation of the Problem

The coordinate system for the sphere is shown in Fig. 1 where

the relationship between the cartesian and spherical polar coordinates is

x = r sin 0 cos ,

y = r sin 0 sin ,

z = r cos e . (1)

The sphere is assumed to consist of solid isotropic material supporting

both compressional and shear waves. The displacement vector u can

be expressed using the vector and scalar potentials A and 4 as

follows 
[ 6]

[I] L.D. Hampton and C.M. McKinney;J.A.S.A., 33, 5, 1961, p. 664.

[2] J. J. Faran; J.A.S.A., 23, 4, 1951, p. 405.

[3] P. M. Morse and'H. Feshbach; "Methods of Theoretical Physics"
(McGraw-Hill Book Company, New York, 1953) Vol. II, p. 1483.

[4] V. C. Anderson; J.A.S.A. 22, 4, 1950, p. 426.

[5] H. Stenzel; Leitfaden zur Berechnung von Schallvorgagen, Julius
Springer, Berlin, 1939.

[6] Morse and Feshbach p. 142



3

u =-Vq + V A ,(2)

where

N73 = (l/c -2),97 a/tz  (3)

VP.A,= (1/c2) 82 T/ az (4)

describe the motion of the compressional and shear waves respectively,

c and c are the compressional and shear wave velocities defined by1 2

c [E(l-a)/p (+o)(1-2o)] 2

1

C [E/2P (1+o)] (5)22

where E, p, , a are the Young's modulus, density and Poisson's ratio

of the solid material of the sphere.

Outside the sphere there is a limitless fluid of density p and

sound velocity c in which there is a continuous train of waves emanating

from a point source situated on the z axis at r = r, 0 = 7r. The time

dependence of these waves is of the form exp(-iwt) from which the wave

number k in the fluid is obtained by means of the relation

k = w/c = 27r/X

where X is the wave length. Similar relations

k =wo/c ; k =W/c1t 1 2 2

hold for the compressional and shear waves in the solid. The waves

emanating from the point source can be expressed(
7 ]

[7] ibid p. 1466



4

Pi.=P exp(ikD)/D

t 00

= ik P0  (2n+l)(-l) Pn(cos O)jn(kr)hn(kro) 0 < r < r

n--o (6)

where

D =[r+2r r cos + r]2
0 0

and the P are Legendre polynomials, and the in' hn are spherical

Bessel functions [8] Plane waves incident on the sphere are obtained by

making r0 go to infinity. Using the two limits

exp (ikD)/D -exp (ik r0 ) exp (ik r cos 0)/r o

hn(kr0 ) -(n+)exp (ik r0 )/kr0  (7)

and removing the common factor exp(ik ro)/r 0 gives

Pi= P 0 exp (ikr cos 9)

PO (2n+:)inPn(cos O)jn(kr) (8)

n=o

The above waves, pi, incident on the sphere result in scattered

waves in the fluid which will be of the form

00

Ps .= P c nhn(kr)Pn(cos ) (9)

n=o

[8] ibidp. 1325 andp. 1573
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where the coefficients c have to be determined from the boundary con-n

ditions at the surface of the sphere. The appropriate conditions are:

(a) the pressure in the fluid is equal to the normal

component of stress in the solid.

(b) the normal component of displacement of the

fluid is equal to the normal component of displace-

ment of the solid.

(c) the tangential components of shearing stress in

the solid vanish at the surface.

These conditions can be expressedE9 ] in the relationsa OU
"i+ p + 2p c (2  divu+ 0 (10)

U. +u = U (11)

i, r s,r r

and

U U 8 + 1 aUr(12)

- -F r (I0

evaluated on the surface of the sphere at r = a. The displacement of the

fluid in Eq. (11) is obtained from (6) and (9) by using

ui,r +Us,r =(1lr/w) O(p+ps)Iar . (13)

Because of the symmetry of the incident waves, the component of dis-

placement uo is taken to be zero and the 0 component of the shearing

stress can also be neglected. The only non-zero component of the Vector

[9] ibidp. 142 and p. 116.



potential will be AO so that the potentials become

00

a2 anin(k r) Pn(Cos 0)
n=o

0

A bnin(k r) Pn(COs6) (14)

n=o

Using Eq. (2) these expansions can be inserted into the boundary condi-

tions (10) - (12) and the coefficients of each normal mode equated. The

coefficients cn of the scattered waves in the fluid given by Eq; (9) can

then be expressed as follows,

cn k(-l)n(2n+l) o n(kro0 sin% exp(-iln) (15)

where the angle qn is given by

tan = - [Jn(X)Fn-j 'n(x)] / [nn(X)Fn-n'n(x) ] (16)

with

x jn '(X) 2(n2 +n)j n(x

in ? n na xj n'('x1 )"in(xi) '  (na+n" 2)Jn(X )+x}Jn"(x;

n x 2TzJn(xl )Hj'!(x1 ). 2(nz+n)[jn(X )-xjn,(X)]

1 n z(X )Jn (X I (n 2 +n- 2)j n(X )+x 2jnI"(x)

(17)

and

x=ka ; x =k a ; x =k a1 1 2 2
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The primes denote the derivative with respect to the argument. This

result was first derived by Faran[ Z1. However there was an error in

his presentation in which the factor o/(1-2a) was misplaced. Finally it

should be noted that the expression on the right hand side of Eq. (15) is of

the form f(x)/(f(x) + ig(x)) where f, g are regular on the real axis.

Hence there are no singularities when the argument is real, and the

function can be integrated numerically in a straightforward manner. It

also follows that the solution as presented is complete for all frequencies,

i. e., the boundary conditions are fully satisfied by the shear and com-

pressional waves postulated in Eq. (14).

Certain limiting cases are of interest. If Fn -- 0, the solution

[10]would then apply to scattering by a rigid immovable sphere . This

would be the case for instance when the density of the solid was very

much greater than that of the fluid. If F -- oo the solution for scatter-
n

ing by a free surface sphere is obtained[ll]. This corresponds to the

condition where the normal stress at the surface of the sphere vanishes,

which would result for example when the density of the material inside

the sphere was very much less than that of the fluid.

From the above it follows that the echo returned by the solid

sphere to the source is given by

[10] P. M. Morse; Vibration and Sound (McGraw-Hill Book Co. Inc.
New York 1948) p. 354

[11] Morse and Feshbachp. 1483
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00(,2n l) sin )xi hO (xO
Pe sPO 2x

n-o

P
Z°fx, xi x n exp (-ix ]) (18)

where x kr = xR, and r ct/a. When the source is a large distance
0 0

from the sphere

e a pu (o frn(2n+l) sinqn expr exp ik(2r o- Ct)P e r z - 1 n0
0r n=o

P a0

2r (t) =o-X,-,x  g exp [ix(ZR- [)] 11()

Removal of a factor exp (ik rar gives the solution for incident plane

0 0

waves. Equations (18) and (19) can then be used to construct the echo due

t to a pressure pulse emanating from the source. Suppose the source

I emits a pulse of form P.(t). This can be expressed in terms of Fourier

i components as

i Pi(t) -. '-O g(k) exp [ik(D-ct)] dk (20)

S2-r) "ED Oo

Swhere D is as defined previously. The frequency spectrum glk) is

I found by taking the Fourier transform of the given pulse, i. e.,

g(k) Pi(t) exp [-ik(D-ct)] dt (21)

(Z7r)
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With the new variable x = ka, the reflected pulse will be
Pc 500

Pe(T) g(x) f (Xx 0 ,x ) exp (-ixT) dx (22)
(2= )2ar -00

0

and when the point source moves to a large distance from the sphere

P 00
P e (7) _- I g(x) f0(x,x x )exp[ix(2R-7)]dx

2(27et 2 r 0 -00' (23)

0

In general the echo given by (23) will differ in form from that of

the incident pulse (20). Only for high frequencies in the special cases of

a rigid and a free surface sphere will it be the same. It can be shown [ 1 2 ]

that in the former case f 0 0 exp(-2ix) as x becomes large while for the

free surface sphere f0 -- exp (-2ix). Hence if the frequencies containedfree urfae spere 00

in the pulse are in the high frequency range, Eq. (23) becomes

Po 5 00

Pr 1 7 ) - 0 00 g(x) exp [ix(2R-2-7)] dx
2(21T) r -o

0

which means that the reflected pulse has the same form as the emitted

pulse,but is returned time 2(r -a)/c later. This travel time indicates

that the sound is reflected from a point source reflector at the point on

the surface of the sphere nearest to the source of incident sound. A

similar result holds for the free surface sphere except that the pulse is

inverted.

[12] ibid p. 1554.
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3. The Steady State Solutions

The steady state solutions given by the functions f in Eqs. (18),

(19) were determined for a certain number of cases, the calculations being

performed on a high speed computer. The -results are shown Figs. 2-13.

The first results obtained were for the special cases of the

[10] [1
rigid and free surface ]spheres for a distant point source of con-

tinuous waves. These are shown in Figs. 2(a), (b). The argument of the

function fe is presented divided by the variable x = ka. The results for

[5]
the rigid sphere are in agreement with those of Stenzel For low

frequencies the function is given by the initial terms in the series expan-

sion which in the limit as x tends to zero are

2i Jo(x) 33x. ix3

S- ____

and

2i jo(x) _

-_ x- 2(1 -ix) ,

0

for the rigid and free surface spheres respectively. For the rigid sphere

this represents the well-known condition of Rayleigh scattering where the

scattered intensity is proportional to the fourth power of the frequency.

For the free surface sphere the results are quite different. Not only

does the scattered intensity reach maximum values at low frequencies,

but the scattering is uniform in all directions. For high frequencies both

solutions tend to form exp (- 2ix), the free surface solution converging

more rapidly than that of the rigid sphere. In the previous section, it

was shown that this indicates that at high frequencies the sound is



mainly from a small area on the surface opposite the source and this

would agree with physical intuition. At low frequen-cies the echo appears

to come from the center of the rigid sphere and from a half radius posi-

tion in the free surface splere. As the frequency increases the apparent

origin of the echo moves gradually towards the region on the surface

opposite the source. This is shown in Fig. 2(b), where the phase of f

divided by x = ka represents distance along a radius inside the sphere.

In the case of the rigid sphere these results can be readily understood by

supposing that low frequency waves are intercepted by the entire cross

section whereas high frequency waves behave as in geometrical optics and

form a "bright spot" reflector on the surface opposite the source. With

the free surface sphere the results at low frequencies are not so readily

explainable except that as expected they differ from those for the rigid

sphere.

The main body of results were derived for solid spheres support-

ing internal shear and compressional waves. The properties of the

materials considered are given in Table I. The fluid outside the sphere

was assumed to be water of density 1 gm/cc and compressional velocity

1,410 m/sec.

As an initial test of the programs, the results obtained by Faran [ 21

were recalculated. Since these were for a = 3 no error could result

from the misplacing of the factor a/(1-2a) mentioned in the previous

section since this factor is unity. Good agreement was found.

Some of the results for the materials tested in Table I are given

in detail in Figs. 3-11. As before these are for a distant source.
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TABLE I [ 1 3

Compre s sional

Density Poisson's Velocity Shear Velocity
Material (gm/cc) Ratio a C (m/sec) C (m/sec)

Beryllium 1.87 0.05 12,890 8,880

Fused Silica 2.20 0.17 5,968 3,764

Heavy Silicate,
Flint Glass 3.88 0.224 3,980 2, 380

Armco Iron 7.70 0.29 5,960 3,240

Monel Metal 8.90 0.327 5,350 2,720

Aluminum 2.70 0.355 6,420 3,040

Yellow Brass 8.60 0.374 4,700 2,110

Lucite 1.18 0.40 2,680 1,100

Lead 11.34 0.43 1,960 690

ice[14] 0.917 0.336 2,743 1,433

Generally the range of frequency was for values of ka up to 30, but for

Armco Iron, ice and lucite the range extended to ka = 60, 20, 10 respec-

tively. In addition to the pressure amplitude the phase variation is given

for Armco Iron, and aluminum. In all cases the results begin at low

frequencies as though the solid were a rigid body, changing in general

[ 113] American Inst. of Physics Handbook (McGraw-Hill Book Company,
Inc. New York, 1957).

[14] D. L. Anderson; Trans. of Engin. Inst. of Canada, Vol. 2, pp. 116-122,
1958.
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into a fairly regular series of peaks and minima as the frequency in-

creases. With a rigid, incompressible material such as beryllium, the

change from the rigid body solution is not very great. However, as the

material becomes more compressible and pliant, the resonances tend to

become more pronounced and more closely spaced. In the case of lucite

and ice the resonances have become quite sharp and close together. This

general trend was investigated by considering an average frequency in-

terval between minima or between resonance peaks for each material.

The results are shown in Fig. 1.2 plotted against the shear velocity c 2

Parameters other than c were also considered such as Poisson's ratio2

a, but with these the scatter of points was much greater. It appears

therefore that this feature is most strongly dependent on the behavior

of shear waves in the material. The successive peaks and minima which

occur in the direct echo for a continuous frequency were shown by

Faran [ 2 J to be due to strong lobes of backscattered radiation forming and

then splitting again into side lobes scattering in other directions. It

seems therefore that shear waves play an important role in this process.

Other general trends can be observed in Figs.3 - 11. Peaks split off and

merge as the properties of the material change, and as before it appears

that the shear wave velocity is the dominant parameter. The density of

the material seems to have a relatively unimportant effect in water. As

the frequency increases there appears to be no tendency towards some

constant limit as in the cases of the free surface and rigid spheres. The

peaks seem to recur, but in an increasingly ragged form.

In the phase variations shown in Figs. 6, 8 jumps in phase
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occur at frequencies corresponding to minima in the pressure amplitude.

Although the parameter (-arg f./ka) varies continuously from zero as in

the case of the rigid sphere, it does not appear that any direct physical

interpretation should be applied to it concerning the apparent source of

the echo. The representation should be regarded only as a convenient

way of presenting the phase as a continuously varying function.

In order to determine the effect of distance of the sound source

from the center of the sphere the function f in Eq. (18) was evaluated

for a point source at various distances from a rigid, a free surface, and

a brass sphere. The pressure amplitude I f I multiplied by R is shown

in Figs. 13 - 15, allowing a ready comparison with the solutions for a

distant source If00I. In general it appears that f00 represents a satis-

factory solution when the sound source is situated more than 10 radii

from the center of the sphere.

4. Echo Pulse Forms

The most obvious general feature in the steady state solution for

ordinary metals is the succession of peaks and minima in the pressure

amplitude and it is of interest to determine how this affects the pulse

form of the echo when the steady state solutions are used in the integral

expression (23) for a distance source. The incident pulse form could be

chosen arbitrarily. However in practice the incident sound is generally

produced by making a transducer resonate over several cycles at a

particular frequency. Mathematically the pressure variation which

results at a point in the fluid can be represented as follows,
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Pi(t) =0 t < - At

=exp (-i 0t) - At <t <At (24)

=0 t >At

where w is the angular frequency of the transducer at resonance, and

2A t is the duration of the pulse. The frequency spectrum g(w) is

given by the transform

o SAt
g(W) = . -At exp [i(w-w )t] dt

-At0

- _2sin [(o-W) At] / ((-)W

which in the non-dimensionalized system of Eq. (23) becomes

g(x) ="-2sin [ (x-xo) A T] / (x-Xo) (25)

where x° = w a/c and is referredto as the dominant frequency. By use

of Eq. (25) and the previously derived values of the function f it is then

possible to obtain the pulse form of the echo by numerically integrating

Eq. (23).

The nature of the function g in Eq. (25) is shown in Figs. 16 -

18 for different pulse lengths A 7. The height of the main peak occurring

at the dominant frequency is equal to A T and-its "spread" varies inverse-

ly with A T. If the function I f 01 is momentarily idealized as consisting

of a series of similar, equally spaced peaks, it would appear that the

form of the echo depends mainly on the pulse length and on the location

of the dominant frequency relative to the maxima and minima of the .If00.
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Two extreme cases would then arise depending on whether the dominant

frequency coincided with a maximum or with a minimum of If 1.

Using the data for Armco iron as shown in Figs. 5, 6 several

echo pulse forms were computed for different lengths of the incident pulse

and for dominant frequencies corresponding to values of x or ka at

24. 5 and 25. 5. The former frequency occurs at a peak of the pressure

amplitude and the latter at a minimum. The range of integration over ka

for the longer pulses was from 15 to 35, while for the short 5 cycle pulse,

it extended from 10 to 40. The incident pulse did not therefore have a

perfectly rectangular form. However in comparison to experimental

pulse forms, it could be considered a satisfactory approximation. In

addition the irregularities introduced by restricting the range of integra-

tion facilitated the recognition of certain features of the incident pulse in

the echo. The calculated echoes are shown in Figs. 16 - 18. The time

scale for the incident pulse is chosen with respect to the time of arrival

of the mid-point of the pulse at the center of the sphere, whereas the

scale for the echo is chosen with respect to the time of arrival back at

the source. All pulses are shown travelling from right to left. It can be

seen from these figures that the leading edge of the echo precedes that of

the incident pulse by a time difference of 2 in each case. In addition

the leading edge of the echo is of the same form as the leading edge of

the incident pulse. These features indicate that the first part of the echo

consists of a rigid body reflection from the region of the surface of the

sphere adjacent to the sound source. The subsequent parts of the echo

are affected by the vibrations of the sphere. In the case of the five cycle
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pulse, the first echo is of identical form to the incident pulse, while the

second echo is also of the same form, but inverted. Subsequent echoes

diminish in amplitude and lose the characteristic features of the incident

pulse. Whether the dominant frequency occurs at a minimum or a maxi-

mum of the function I fo I does not appear to make much difference to

the form of the echo for the short five cycle pulse, but obviously it is

important when the pulse is longer. The reason can be seen from the

frequency spectra shown in Figs. 16-18. A change in ka of the order

of 1 in the spectrum for the short pulse will not greatly affect the

integral (23); however, this is not the case for the longer pulses. The

differences in form of the echoes shown in Figs. 17, 18 are in fact quite

distinctive. It seems moreover that the changes which occur when the

dominant frequency is moved from a maximum of I f i to a minimum,

are characteristic of any ordinary metal. Figure 19 shows the echoes

from a sphere of aluminum for the same type of incident pulse, where

these results were obtained experimentally. With allowance for a change

of scale and such effects as the response of the transducer, the differences

in the echo resulting from a change in the dominant frequency are closely

related to those shown in Figs. 16 - 18. The sphere in this case had a

diameter of 5 inches and the change in dominant frequency was from

120 kc/sec to 123.5 kc/sec. This is equivalent to a change in ka of

about 1, which according.to Fig. 12 is the approximate distance be-

tween a peak and a minimum of the function If I for most metals in-

cluding aluminum. Using the constants given above for water and

aluminum, it is found that 120 kc/sec does not in fact coincide with a
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pulse, the first echo is of identical form to the incident pulse, while the

second echo is also of the same form, but inverted. Subsequent echoes

diminish in amplitude and lose the characteristic features of the incident

pulse. Whether the dominant frequency occurs at a minimum or a maxi-

mum of the function I f I does not appear to make much difference to

the form of the echo for the short five cycle pulse, but obviously it is

important when the pulse is longer. The reason can be seen from the

frequency spectra shown in Figs. 16-18. A change in ka of the order

of 1 in the spectrum for the short pulse will not greatly affect the

integral (23); however, this is not the case for the longer pulses. The

differences in form of the echoes shown in Figs. 17, 18 are in fact quite

distinctive. It seems moreover that the changes which occur when the

dominant frequency is moved from a maximum of I f I to a minimum,

are characteristic of any ordinary metal. Figure 1 9 shows the echoes

from a sphere of aluminum for the same type of incident pulse, where

these results were obtained experimentally. With allowance for a change

of scale and such effects as the response of the transducer, the differences

in the echo resulting from a change in the dominant frequency are closely

related to those shown in Figs. 16 - 18. The sphere in this case had a

diameter of 5 inches and the change in dominant frequency was from

120 kc/sec to 123.5 kc/sec. This is equivalent to a change in ka of

about 1, which according.to Fig. 12 is the approximate distance be-

tween a peak and a minimum of the function Ifo I for most metals in-

cluding aluminum. Using the constants given above for water and

aluminum, it is found that 120 kc/sec does not in fact coincide with a
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peak of the steady state reflection function If~ I. However this is not

surprising since the values used referred to rolled aluminum. In addi-

tion if the frequency is to be expressed in terms of ka with any accuracy,

it would be necessary to know the velocity of sound in water under the

conditions of the experiment, and also the diameter of the sphere, to

within less than 1%. Echoes were calculated for rolled aluminum at

values of ka equal to 34. 6 and 35. 6 corresponding to frequencies of

122. 3 kc/sec and 125.8 kc/sec, these values occurring at a maximum

and a minimum respectively of the reflection function I fo • The pulse

lengths A T were the same as those in Figs. 16 - 18. Similarlyechoes

were calculated for a brass sphere for frequencies at ka = 20. 2 and

21. 0. These echoes were found to have the same features. The leading

edge was a rigid body reflection and the same kind of transition in pulse

form occurred when the frequency and the pulse length were varied.

With yellow brass the secondary echoes in the multiple echo forms had a

bigger amplitude than the primary echo.

5. Discussion

Although this paper represents only a preliminary study, it may

be worthwhile to consider the significance of the results in relation to

the problem of using sonar echoes to obtain information about a target.

In the first place, it would seem that solid materials could be

divided roughly into two groups, metallic flint-like substances and sub-

stances which are fairly pliant. This can be seen from the steady state

solutions where the former is characterized by a succession of peaks

and minima roughly the same distance apart, while the latter has sharper,
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stronger peaks more closely spaced. Although all the echo forms which

* were calculated belong only to the first type, it is evident from the steady

state solutions that there would be a difference in the general nature of

echoes between the two groups. Hence there would exist the possibility

of distinguishing for instance between a bare rock and a large fish.

Secondly, if the sonar target is known to be a homogeneous

metallic sphere, then it is possible to determine its approximate radius

by using data of the type shown in Fig. 19. The features of the transition

between a peak and a minimum of the steady state reflection function

f0 I for the long incident pulses is characteristic of most ordinary

metals, as shown in the previous section. The transition is accomplished

during a change in ka of the order of 1. Hence given an actual change

in frequency in cycles per second, it is then possible to determine the

radius a of the sphere. For example the transition in pulse form

shown in Fig. 19 is achieved through a frequency change of 3.5 kc/sec

corresponding to a change in ka of about 1 which therefore makes the

radius of the sphere approximately 2. 5 inches. In general however such

an estimate would not be .quite so accurate. It might also be possible to

estimate the size of the sphere by varying the pulse length rather than

the frequency, particularly if the dominant frequency occurs at a mini-

mum of the reflection function j f I. However it would presumably be

necessary to use both.

Finally, it has been shown[15 4hat there are significant differ-

ences in the steady state reflection function f for rigid bodies of

[15] R. Hickling; J.A.S.A., 30, 2, 137-139, Feb. 1958.
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different shapes. Although these effects would be rendered more com-

plicated by allowing for the vibrations of the solid material, it may be

possible to use them to derive some information about the shape of a

sonar target.
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